伺服驱动器的工作原理
伺服驱动器在控制信号的作用下驱动执行电机,因此驱动器是否能正常工作直接影响设备的整体性能。在伺服控制系统中,伺服驱动器相当于大脑,低温直流伺服驱动器原理,执行电机相当于手脚。而伺服驱动器在伺服控制系统中的作用就是调的转速,因此也是一个自动调速系统。
驱动器的主控板,驱动器由继电器板传递控制信号和检测信号,
伺服驱动器的工作模式
伺服驱动器的工作模式主要有:
1.开环模式
用于无刷电机伺服驱动器。与有刷电机驱动器的电压模式类似,主要控制无刷电机伺服驱动器的输出负载率。
2.电压模式
用于有刷电机伺服驱动器。主要控制有刷电机伺服驱动器的输出电压。
3.电流模式(力矩模式)
用于在速度或位置环工作的驱动器。主要控制伺服驱动器的输出电流(力矩),通过调整负载率保持输入命令的电流值。
4.IR补偿模式
与闭环速度模式相似,用于控制无速度反馈装置电机的速度。驱动器会调整负载率来补偿输出电流的变动。当命令响应为线性时,在力矩扰动情况下,此模式的精度就比不上闭环速度模式了。
5.Hall速度模式
用于高速运动控制。主要利用电机上hall传感器的频率,低温直流伺服驱动器结构,形成速度闭环。由于hall传感器的低分辨率,此模式一般不用于低速运动应用。
6.编码器速度模式
用于各种速度的平滑运动控制。此模式利用电机上编码器脉冲的频率来形成速度闭环,由于编码器的高分辨率,可用于平滑运动控制。
7.测速机模式
用于高精度的速度控制。此模式利用电机上模拟测速机,形成速度闭环。由于直流测速机的电压为模拟连续性,此模式在低速情况下容易受到干扰。
8.模拟位置环模式(ANP模式)
用于电机转动位置的控制。模拟位置环模式是一种在模拟装置中提供位置反馈的变化的速度模式(如可调电位器、变压器等)。在此模式下,低温直流伺服驱动器结构,电机速度正比于位置误差,拥有更快速的响应和更小的稳态误差。
伺服驱动器—电动机互馈对拖的测试平台
这种测试系统由四部分组成,分别是三相PWM整流器、被测伺服驱动器—电动机系统、负载伺服驱动器—电动机系统及上位机,低温直流伺服驱动器,其中两台电动机通过联轴器互相连接。被测电动机工作于电动状态,负载电动机工作于发电状态。被测伺服驱动器—电动机系统工作于速度闭环状态,用来控制整个测试平台的转速,负载伺服驱动器—电动机系统工作于转矩闭环状态,通过控制负载电动机的电流来改变负载电动机的转矩大小,模拟被测电机的负载变化,这样互馈对拖测试平台可以实现速度和转矩的灵活调节,完成各种试验功能测试。上位机用于监控整个系统的运行,根据试验要求向两台伺服驱动器发出控制指令,同时接收它们的运行数据,并对数据进行保存、分析与显示。
低温直流伺服驱动器结构-低温直流伺服驱动器-华瑞高和科技由北京华瑞高和科技有限公司提供。北京华瑞高和科技有限公司实力不俗,信誉可靠,在北京 北京市 的直流电动机等行业积累了大批忠诚的客户。华瑞高和带着精益求精的工作态度和不断的完善创新理念和您携手步入**,共创美好未来!